Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Infect Public Health ; 15(2): 222-227, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1611866

ABSTRACT

OBJECTIVES: The severe coronavirus disease 2019 (COVID-19) is characterized by acute respiratory distress syndrome (ARDS) and risk of fungal co-infection, pulmonary aspergillosis in particular. However, COVID-19 associated pulmonary aspergillosis (CAPA) cases remain limited due to the difficulty in diagnosis. METHODS: We describe presumptive invasive aspergillosis in eight patients diagnosed with COVID-19 in a single center in Shenzhen, China. Data collected include underlying conditions, mycological findings, immunodetection results, therapies and outcomes. RESULTS: Four of the eight patients had tested positive for Aspergillus by either culture or Next-generation sequencing analysis of sputum or bronchoalveolar lavage fluid (BALF), while the rest of patients had only positive results in antigen or antibody detection. Although all patients received antifungal therapies, six of these eight patients (66.7%) died. CONCLUSION: Due to the high mortality rate of CAPA, clinical care in patients with CAPA deserves more attention.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/epidemiology , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/epidemiology , SARS-CoV-2 , Tertiary Care Centers
2.
Clin Respir J ; 15(7): 815-825, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1165887

ABSTRACT

BACKGROUND: Co-infections, secondary bacterial or fungal infections, are important risk factors for poor outcomes in viral infections. The prevalence of co-infection and secondary infection in patients infected with SARS-CoV-2 is not well understood. AIMS: To investigate the role of co-infections and secondary infections in disease severity of hospitalized individuals with COVID-19. MATERIALS AND METHODS: A retrospective study was carried out between 11 January 2020 and 1 March 2020 among 408 laboratory confirmed COVID-19 patients in China. These patients were divided into three groups based on disease severity: mild or moderate, severe, or critically ill. Microbiological pathogens in blood, urine, and respiratory tract specimens were detected by the combination of culture, serology, polymerase chain reaction, and metagenomic next-generation sequencing (mNGS). RESULTS: The median age of participants was 48 years (IQR 34-60 years). Fifty-two patients (12.7%) had at least one additional pathogen, 8.1% were co-infected, and 5.1% had a secondary infection. There were 13 Mycoplasma pneumoniae cases, 8 Haemophilus influenzae cases, 8 respiratory viruses, and 3 Streptococcus pneumoniae cases, primarily detected in mild and moderate COVID-19 patients. Hospital-acquired infection pathogens were more common in critically ill patients. Compared to those without additional pathogens, patients with co-infections and/or secondary infections were more likely to receive antibiotics (p < 0.001) and have elevated levels of d-dimer (p = 0.0012), interleukin-6 (p = 0.0027), and procalcitonin (p = 0.0002). The performance of conventional culture was comparable with that of mNGS in diagnosis of secondary infections. CONCLUSION: Co-infections and secondary infections existed in hospitalized COVID-19 patients and were relevant to the disease severity. Screening of common respiratory pathogens and hospital infection control should be strengthened.


Subject(s)
COVID-19 , Coinfection , Virus Diseases , Adult , Coinfection/epidemiology , Humans , Middle Aged , Retrospective Studies , SARS-CoV-2
3.
Engineering (Beijing) ; 6(10): 1192-1198, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-9104

ABSTRACT

There is currently an outbreak of respiratory disease caused by a novel coronavirus. The virus has been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes has been named coronavirus disease 2019 (COVID-19). More than 16% of patients developed acute respiratory distress syndrome, and the fatality ratio was 1%-2%. No specific treatment has been reported. Herein, we examined the effects of favipiravir (FPV) versus lopinavir (LPV)/ritonavir (RTV) for the treatment of COVID-19. Patients with laboratory-confirmed COVID-19 who received oral FPV (Day 1: 1600 mg twice daily; Days 2-14: 600 mg twice daily) plus interferon (IFN)-α by aerosol inhalation (5 million international unit (IU) twice daily) were included in the FPV arm of this study, whereas patients who were treated with LPV/RTV (Days 1-14: 400 mg/100 mg twice daily) plus IFN-α by aerosol inhalation (5 million IU twice daily) were included in the control arm. Changes in chest computed tomography (CT), viral clearance, and drug safety were compared between the two groups. For the 35 patients enrolled in the FPV arm and the 45 patients in the control arm, all baseline characteristics were comparable between the two arms. A shorter viral clearance median time was found for the FPV arm versus the control arm (4 d (interquartile range (IQR): 2.5-9) versus 11 d (IQR: 8-13), P < 0.001). The FPV arm also showed significant improvement in chest CT compared with the control arm, with an improvement rate of 91.43% versus 62.22% (P = 0.004). After adjustment for potential confounders, the FPV arm also showed a significantly higher improvement rate in chest CT. Multivariable Cox regression showed that FPV was independently associated with faster viral clearance. In addition, fewer adverse events were found in the FPV arm than in the control arm. In this open-label before-after controlled study, FPV showed better therapeutic responses on COVID-19 in terms of disease progression and viral clearance. These preliminary clinical results provide useful information of treatments for SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL